Skip to main content

Benchmarking results when using single process-based simulation

DatasetModelAccuracy (Exp/Ref)
MNISTLR81.9 /
Federated EMNISTCNN80.2 / 84.9
fed_CIFAR100ResNet34.0 / 44.7
shakespeare (LEAF)RNN53.1 /
fed_shakespeare (Google)RNN57.1 / 56.9
stackoverflow_nwpRNN18.3 / 19.5

Note: Experimental results are the test accuracy of the last communication rounds, while the reference results are the validation results from referenced paper.

Hyper-parameters to reproduce the benchmarking results (non-IID)

MNIST + Logistic Regression

data_args:
dataset: "mnist"
partition_method: "hetero"
partition_alpha: 0.5

model_args:
model: "lr"

train_args:
federated_optimizer: "FedAvg"
client_id_list: "[]"
client_num_in_total: 1000
client_num_per_round: 10
comm_round: 200
epochs: 1
batch_size: 10
client_optimizer: sgd
learning_rate: 0.03

The reference experimental result: https://app.wandb.ai/automl/fedml/runs/ybv29kak

result

Shakespeare (LEAF) + RNN

data_args:
dataset: "mnist"
partition_method: "hetero"
partition_alpha: 0.5

model_args:
model: "lr"

train_args:
federated_optimizer: "FedAvg"
client_id_list: "[]"
client_num_in_total: 10
client_num_per_round: 10
comm_round: 10
epochs: 1
batch_size: 10
client_optimizer: sgd
learning_rate: 0.8

The experimental result refers to:https://app.wandb.ai/automl/fedml/runs/2al5q5mi

Shakespeare + RNN

Shakespeare (Google) + RNN

data_args:
dataset: "shakespeare"
partition_method: "hetero"
partition_alpha: 0.5

model_args:
model: "lr"

train_args:
federated_optimizer: "FedAvg"
client_id_list: "[]"
client_num_in_total: 10
client_num_per_round: 10
comm_round: 1000
epochs: 1
batch_size: 10
client_optimizer: sgd
learning_rate: 0.8

The experimental result refers to:https://wandb.ai/automl/fedml/runs/4btyrt0u

Shakespeare + RNN

Federated EMNIST + CNN

data_args:
dataset: "femnist"
partition_method: "hetero"
partition_alpha: 0.5

model_args:
model: "lr"

train_args:
federated_optimizer: "FedAvg"
client_id_list: "[]"
client_num_in_total: 10
client_num_per_round: 10
comm_round: 1000
epochs: 1
batch_size: 20
client_optimizer: sgd
learning_rate: 0.03

The experimental result refers to:https://wandb.ai/automl/fedml/runs/3lv4gmpz

Federated EMNIST + CNN

Fed-CIFAR100 + CNN

data_args:
dataset: "fed_cifar100"
partition_method: "hetero"
partition_alpha: 0.5

model_args:
model: "resnet18_gn"

train_args:
federated_optimizer: "FedAvg"
client_id_list: "[]"
client_num_in_total: 10
client_num_per_round: 10
comm_round: 4000
epochs: 1
batch_size: 10
client_optimizer: sgd
learning_rate: 0.1

The experimental result refers to:https://wandb.ai/automl/fedml/runs/1canbwed

Stackoverflow + Logistic Regression

data_args:
dataset: "stackoverflow_lr"
partition_method: "hetero"
partition_alpha: 0.5

model_args:
model: "lr"

train_args:
federated_optimizer: "FedAvg"
client_id_list: "[]"
client_num_in_total: 10
client_num_per_round: 10
comm_round: 2000
epochs: 1
batch_size: 10
client_optimizer: sgd
learning_rate: 0.03

The experimental result refers to:https://wandb.ai/automl/fedml/runs/3aponqml

Stackoverflow + RNN

data_args:
dataset: "stackoverflow_nwp"
partition_method: "hetero"
partition_alpha: 0.5

model_args:
model: "rnn"

train_args:
federated_optimizer: "FedAvg"
client_id_list: "[]"
client_num_in_total: 10
client_num_per_round: 10
comm_round: 2000
epochs: 1
batch_size: 10
client_optimizer: sgd
learning_rate: 0.03

The experimental result refers to: https://wandb.ai/automl/fedml/runs/7pf2c9r2

CIFAR-10 + ResNet-56

data_args:
dataset: "cifar10"
partition_method: "hetero"
partition_alpha: 0.5

model_args:
model: "resnet56"

train_args:
federated_optimizer: "FedAvg"
client_id_list: "[]"
client_num_in_total: 10
client_num_per_round: 10
comm_round: 200
epochs: 1
batch_size: 10
client_optimizer: sgd
learning_rate: 0.03